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Abstract-A general analytical approach to the thermal conductivity of porous media is developed which 
leads to theoretically sound expressions having a wide range of applicability and easily fitted to available 
empirical data. Specifically, practical expressions are derived for pore distributions of any concentration, 
randomly oriented pores of arbitrary shape, pores of any conductivity, radiant heat transfer within pores, 
and fibrous media. Most results transfer freely to electrical conductivity or any other general area where 
Laplace’s equation applies. Fundamental limitations of the approach restrict its use to random pore 
distributions and heat transfer through the continuous medium by conduction. Examples are chosen from 
selected problem areas of current interest, spanning a wide range of pore types, volume fractions, and 

conductivities. 

INTRODUCTION 

THIS PAPER revisits the very old analytical question of 
the alteration of a medium’s thermal conductivity by 
a random distribution of pores. Fundamentally, the 
theoretical problem is to account for the microscopic 
distortion of the temperature field in the neigh- 
borhood of an individual pore and consistently 
calculate its influence on macroscopic temperature 
gradients. Applications to the wide variety of hetero- 
geneous materials of current interest to engineering 
and the physical sciences are almost endless. In spite 
of the ‘classical’ nature of this problem, it may be 
surprising to note that there still remains a practical 
need for generally applicable, theoretically sound 
expressions for porous medium conductivity that can 
be applied over a wide range of pore composition, 
shapes, and concentrations. 

In fact, obtaining theoretical assessments for prac- 
tical problems can often be quite frustrating. Most 
historical and current reported work on the subject 
may be categorized as (1) highly application-specific 
empirical fits to data, (2) idealized microscopic treat- 
ments, or (3) macroscopic lumped-parameter engin- 
eering approaches. Application-specific work is too 
narrow in scope to be generally useful. Consequently, 
results from idealized microscopic treatments, dating 
back to pioneering efforts of Maxwell [I] are often 
employed to meet more general needs. While this orig- 
inal approach does account for the microscopic dis- 
tortion of the temperature field, its use is usually 
restricted to dilute concentrations of regularly shaped 

t Work performed under the auspices of the U.S. Depart- 
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pores [l-3]. In one case, however, Bruggeman [4] 
succeeded in generalizing Maxwell’s spherical pore 
result to high concentrations. Alternative ‘lumped 
parameter’ macroscopic engineering approaches 
account for general mixtures of materials of any con- 
centration [5] but are often grossly in error m$ro- 
scopically in the neighborhood of an individual pore. 

Motivated by practical need, this paper proposes a 
general approach to thermal conduction in porous 
media intended for a wide range of applicability, suit- 
able for purposes of design and analysis, and useful for 
both interpolation and extrapolation of experimen- 
tal data. The approach is to generalize Maxwell’s 
‘classical’ theoretical result for dilute distributions 
of spherical pores [l] to pores of any shape and con- 
centration. Bruggeman’s earlier results for spherical 
pores [4] are included as a special case. The fun- 
damental advance is the use of randomness, uniform- 
ity, and symmetry assumptions in key places to enable 
tractable solutions of potentially highly complex 
problems. Randomness of pore spatial distribution 
permits development of useful bounding and con- 
straining relationships and allows results derived for 
dilute pore distributions to be generalized to all con- 
centrations. Random pore orientation allows spheri- 
cal symmetry to simplify the problem and reduce the 
effect of general pore shape to a ‘shape factor’ par- 
ameter, which may be determined empirically. The 
resulting empirical expressions for thermal con- 
ductivity are useful for any pore composition, shape, 
size, or concentration. To illustrate further extension 
of general methods, we include radiant heat transfer 
within pores. We also extend results to encompass 
fibers, which are modeled as macroscopically long 
cylindrical pores. Empirical fits are made in a few 
selected problem areas that illustrate a wide range of 
usefulness. 
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NOMENCLATURE 

A dimcnsionlcss multiplier relating I/ index of refraction of a transparent port 

conductivity change to porosity I’ porosity. /IV,, = (c’- I.,,) f~ 

A , dimensionless multiplier appropriate to R volumetric radius of a single port 

heat flow parallel, perpendicular to R / 2 radius surrounding pore whcrc 

long fibers temperature (1) or heat flux (2) is 

B constant determining temperature field continuous 

inside a pore T teniperaturc 

C’ multiplier of the dipole temperature tield T,,,,,dL. temperature field inside a pore 

perturbation T ,,iii\l& tempcraturc field outside a pore 

C emissivity of the inside surface of a c. total volume of the porous medium 

transparent port 1 ‘/, volume of an individual pore 

K thermal conductivity 1 ‘/J total volume of the unperturbed 

K effective thermal conductivity of the continuous medium. 

porous medium 

4 thermal conductivity ofthe pore material Greek symbols 

4, thermal conductivity of the unperturbed 2 ratio of K,/ti,, 

continuous medium i: shape factor of a randomly oriented port 

L length of a long fiber ::, 1 pot-c shape factors defined by R, ), R 

12 number of ports per unit volume fT Stefan Boltzmann constant. 

-- 

PROBLEM DEFINITION scales as being ‘the same as’ or ‘much larger than‘ the 

Formally, the analytical problem is to account for 
the effect of randomly distributed pores or inclusions 
on the solution of Laplacc’s heat conduction equation 
and to express the result as an altered ‘effective’ 
thermal conductivity through an equivalent ‘homo- 
genized’ medium. This, of course. only makes physical 

sense to problems where macroscopic length scales 
are much larger than individual pores. Also, our atten- 
tion is focused on heat transfer by conduction. Radi- 
ative heat transfer will be included only when it occurs 
inside the ports themselves. Convective heat transfer 
is not considered at all. While discussion in this papel 
is couched in the language ofhcat transfer. it is evident 

that most results transfer freely to electrical con- 
ductivity. or any other general area where Laplace’s 

equation applies. 
Our concept of ‘porous medium’ is intended to 

be very general and encompass any heterogeneous 
material consisting of identifiable continuous and ran- 
domly-distributed discrete phases. In all cases, the 
discrete phases are ‘pores’, regardless of which phase 
has the higher conductivity. For example, non-con- 
ducting ‘holes’ distributed within a conducting solid 
is a Familiar example of a porous medium with the 
holes as pores and the solid as the continuous medium. 
Alternatively, solid debris within a gas or liquid would 
also be considered a porous medium with the solid 
debris as pores and the fluid as continuous medium. 
The porosity. P. is defined as the net volume fraction 
of the material occupied by pores. For pores of given 
composition and shape. our objective is to determine 
an effective macroscopic thermal conductivity as a 

function of P. 
We define ‘microscopic’ and ‘macroscopic’ length 

dimension of individual pores. Porosity, P. is cal- 
culated microscopically as the product nV,,, whcrc E 
is a pore number density and I’,, is an average port 
volume. P is also calculated macroscopically as 
(V- I’,,); k. where I’,, is the volume of the continuous 
medium and C’ is the total volume. including ports. 

BOUNDING MODEL AND CONSTRAINT 

Certain macroscopic physical properties of a 

porous medium have a quite simple porosity depcn- 
dencc. For instance, material density turns out to be 
simply the average of the pore and continuous 
material densities weighted by the factors P and 1 -P 
respectively. A net swelling of the continuous medium. 
C’:V,, brought about by the addition of pore volume 
is calculated by I /( I -P). 

While the porosity dcpendencc of thermal con- 
ductivity is in general more complex. one simple 
but important bounding model closely follows the 
cxamplc of density. Let K,, and K,, bc the thermal 
conductivities of the continuous medium and port 
maCeria1 respectively, and K, be the combined effective 
macroscopic conductivity. In a thin slice cut per- 
pendicular to an assumed direction of macroscopic 
heat flow, a fraction. 1 -P, of the area will conduct 
heat in proportion to thermal conductivity Ko. and 
Ihe remaining fraction, P. of the area will conduct 
heat in proportion to thermal conductivity K,. If this 
thin slice is placed in a uniform temperature gradient 
normal to the axial slice. Kc is given by an average of 
K,, and K, weighted by 1 -P and P respectively : 

Kc1 \/,< c = K,,(lLP)+K,,P. (1) 
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The analysis changes significantly, however, when 

extending the result of equation (1) to macroscopic 

thicknesses. In general, if a number of axial slices are 

stacked together each with randomly situated pores, 
the macroscopic heat flux appears uniform and nor- 
mal to the axial slices, but the microscopic tem- 
perature gradient (and hence the direction of heat 
flow) in the vicinity of an individual pore is neither 
uniform nor normal to the axial slice. For instance, if 
the pores are non-conducting (&, = 0), it is evident 
that heat must flow around each pore, and if pore 
locations change randomly from slice to slice, the 
truth path length for heat flowing through the medium 
must exceed the nominal macroscopic thickness of 

the slices. Because of this increased microscopic path 
length, the effective thermal conductivity will be less 
than implied by equation (1). In fact, as long as Kp 
differs significantly from Ku, heat flow traversing a 
number of axial slices deviates from normal either by 
systematically bending away from pores if K, < K,, 
or bending toward pores if Kp > K,. In either case, if 
pores are randomly situated from slice to slice, the 
true path length for heat flow necessarily exceeds the 
nominal thickness of the material, and equation (1) 
overestimates effective thermal conductivity by the 
ratio of microscopic (actual) to macroscopic (nomi- 
nal) path length. However, in the limiting case where 
Kp + K, microscopic heat flow becomes normal to the 
slices, and equation (1) becomes exact. Equation (2) 
summarizes these considerations for correction factor 

KJK,. 

and 

K,/& Q 1 - (I- K,/K,)P 

(COSQ) = 
KC 

K,(l -P)+K,P’ 

In equation (2) equality holds in the limit K, + K,, 
and (cos 0) refers to the average cosine of the angle 
between microscopic and macroscopic heat flow. 
These results are valid wherever pore distributions are 
random and represent general constraints and limits 
against which more detailed models and empirical 
relations may be tested. 

It is useful at this point to comment on lumped 
parameter approaches to thermal conductivity of het- 
erogeneous media. Such approaches envision a unit 
cell made up of a representative distribution of con- 
stituents connected by a minimal number of lumped 
‘series’ and/or ‘parallel’ conduction paths. A macro- 
scopic conductivity is then evaluated by combining 
these conductors into a single equivalent. Lumped 
parameter models are most useful in describing 
macroscopic situations where conduction paths are 
well defined and appropriate conductors can be 
realistically chosen on the basis of engineering judge- 
ment. For example, the widely used lumped parameter 
formalism developed by Kampf and Karsten [5] com- 
putes conductors assuming all heat flow in the prob- 

lem is along the direction of macroscopic heat flow. 
However, our analysis leading to equation (2) indi- 

cates that, microscopically, this key heat flow assump- 

tion holds true only for very thin slices of material or 
in the limit K, -+ K,. Because microscopic conduction 
paths where Kp # K, are in general complex, we 
conclude that lumped parameter models, such as 
ref. [5], will fall short (or at least be very difficult to 
implement) in analyses where temperature gradients 
and heat how bend significantly in the neighborhood 
of individual pores. 

GENERAL THEORY 

For a more general treatment of conductivity we 

proceed toward a solution of Laplace’s heat con- 
duction equation in a porous medium that accounts 
for local distortion of the temperature profile as well 
as global amounts of material. At the microscopic 
level in the neighborhood of an individual pore, 
the longest-ranged temperature field perturbation 
induced is that of a ‘dipole’ heat source. It will be 
shown that modification of the material’s thermal 
conductivity depends principally on the strength and 
concentration of such pore-centered dipole heat 
sources. 

With considerable generality the perturbation of a 

uniform, unit temperature gradient by a distribution 
of identical pores in an otherwise uniform medium 
may be described by the equation : 

s c _’ 

T(r) = z+ LPr’n(r’) c ,,‘-):, 3 

fterms of order Ml. (3) 

T(r) is the temperature at the point in space, Y = 

(x, y, z), in the uniform medium. Pores themselves 
are centered at space points, r’, with a number 
density, n(r’). The applied unit temperature gradient 
is in the z direction. 

Equation (3) is a particular solution to Laplace’s 

equation, V2T(r) = 0, in the uniform medium which 
meets the required boundary condition of a unit, uni- 

form temperature gradient far away from all pores. 
The first term on the right hand side indicates 
the unperturbed unit temperature gradient. The 
additional terms represent a multipole expansion of 
temperature field perturbations centered at pore 
locations. The first perturbative dipole term, shown 
with the multiplier, C (dimension of volume), has both 
the longest range and the simplest angular dependence 
relative to the z axis. The additional ‘higher order’ 
perturbative terms indicated (symbolically) fall off 
more rapidly with distance and have more complex 
angular dependence. The coefficient, C, as well as 
coefficients of higher order perturbative terms, are 
determined on the basis of continuity of temperature 
and heat flux at the pore boundary surface. 



4184 T. 1~1. BAI;I:K 

Porous Medium 

0 

Continuous Medium 

Direction of 
Heat Flow 

Control 
Volume 

/ DZ 

0 

FIG. I. Side GM of a cylindrical control volume spanning 
the boundary between the porous and continuous media. 

As long as n(r’) is a smooth function that is macro- 
scopically slowly varying. it is useful to ‘homogenize’ 
the temperature field in the medium by formally 
extending the range of validity of equation (3) to 
include all space. even regions actually occupied by 
pores and singular regions where I‘ = 1.‘. In so doing, 
the Laplacian operating on the homogenized 7’(r) is 
no longer identically zero but can be shown to bc : 

(homogenized temperature field) (4) 

(Obtaining the equation (4) result makes use of the 
identity substitution : -i(l,l/-r’l):? = (z-z’). 
)1.-r ) ’ ’ in equation (3) followed by an integration 
by parts with respect to 5. The Laplacian opcra- 
tion : V’( I:‘Ir-~‘1) = -4nii(,.-1.‘) extracts the result 
shown.) With equation (4) we have mathematically 
extracted a multipolc expansion of distributed pore- 
centered heat sources that would lead to the tetn- 
peraturc field perturbations described in equation (3). 
The first such heat source on the right hand side. 
proportional to the gradient of the pore number 
density, represents each pore as a dipole heat source 
of strength proportional to 47rC. The remaining terms, 
proportional to higher order spatial dcrivativcs of 
the number density. represent higher-order multipole 
sources associated with each pore. We will now show 
that our desired modification of the medium’s thermal 
conductivity is directly dctcrmined by thcsc pore- 
centered heat sources. 

Assume a semi-infinite slab of porous material in 
which pores arc distributed uniformly in the .\‘-_I’ plane 
with a boundary located at I = 0 such that pore num- 
bcr density is II when : < 0. but 0 when : > 0. Figure 
I shows a selected cylindrical control volume placed 
within this configuration with axis parallel to the r-axis 
with one face located at z < 0 in the porous medium 
and the other at z > 0 in the continuous medium. For 
z >> 0. a unit temperature gradient exists in the Z- 

direction that is uniform over the .I -1’ plane. Intc- 
grating both sides of equation (4) over an arbitrary 
control volume and applying the Gauss divcrgencc 
theorem to the left hand side yields : 

itcrms of ordcrCJf7(r) 
1 

i_’ (5) 

Applying equation (5) to the configuration and LXX- 

trol volume of Fig. 1. the left hand side yields the arca 
of the control volutne face times the diffcrencc in 

temperature gradient between the porous and con- 
tinuous medium. Recognizing that the integrand con- 
tains only derivatives with respect to 1. the right hand 
side yields the area of the control volume fact times 

the quantity. 4nr1C. Importantly. only the dipole term 
on the right hand side survives this integration because 
derivatives of the nutnbcr density are 0 on both sides 
of the : = 0 boundary. We are thus led to the \‘erq 
gcncral result that the presence of ports alters the 
tcmperaturc gradient in the hotnogcnized poroub 
medium by a factor, I +4nK. 

Heat flux in the homogenized medium is given 1~1 
conductivity times temperature gradient. Since hca~ 

flux ir continuous in the z direction. the ratio 01 
porous-to-continuous medium thermal conductivit! 
equals the ratio of continuous-to-porous medium 
temperature gradient. or: 

K,:K,, = I,(1 f47UrC ). (6) 

Equation (6) is our fundamental expression describing 
the alteration of a medium’s conductivity. and the 
determination of C’. the dipole heat source generatcd 
by individual pores. will bc the starting point and 
focus 01‘ subsequent analyses. 

DILUTE PORE LIMIT 

Evalu;ttion oPthcdipole heat source C’and equation 
(6) is much simplified in the limit of dilute pore con- 
centrations, as defined by 4ntzC’ CC I. In this limit. 
temperature perturbations produced by individual 
pores interfere minimally with one another. and detcr- 
mination of C’simplifies to a ‘unit cell’ type calculation 
of the perturbation ofa unit temperature gradient by a 
single pore placed in a uniform medium. Dimensional 
considerations also imply that the pore size. Itself. 
provides the only length scale. where C, having the 
ditncnsion of volume, is necessarily proportional to 
the pore volume. C’,. Recalling that II C’,, = P, WC may 
write : 

4mc‘ = A(K,,‘K,,)P (dilute pot-c limit) 171 

where il is a dimensionless quantity depending on 

pore shape and the ratio of pore to continuous tned- 
ium conductivities. To leading order in 4nnC’. equo- 
tion (6) may also be written : 
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KJK, = 1 -A(K,/K,)P (dilute pore limit). (8) 

Derivations of A for pore-types of interest will be 
given subsequently. General thermal conductivity 

bounds implied by equation (2) apply also to equation 
(8) and impose important limits on the multiplier, A. 
As a function of c( 3 K,/K,, A(a) must be greater than 
or equal to 1 -Z for all c( > 0 with equality in the limit 
cc + 1. Applying these constraints to non-conducting 
pores, for example, implies that A must be a constant 
greater than 1. 

GENERALIZATION TO ALL PORE 

CONCENTRATIONS 

Generalizing results to all pore concentrations is 

potentially very complex if pores are close enough 
together that temperature perturbations interfere. 
However, our approach here is to extend the utility 
of the expressions derived above for the dilute pore 
limit to all pore concentrations through a sequence of 
‘dilute’ analyses. The key assumption is that tem- 
perature field perturbations produced by random pore 

distributions may be smoothed and averaged even 
down to a microscopic level. We note that extending 
a smoothing assumption down to microscopic length 
scales is only plausible for random distributions. In 
this picture, the smoothed and averaged influence of 
neighboring pores is included in the equivalent uni- 
form medium in which each individual pore is embed- 
ded. Conceptually, pore volume can be added to the 
medium in small dilute increments so that pores 
included in each increment see a uniform medium 
that includes effects of previously added porosity and 
where each increment further modifies the equivalent 
thermal conductivity in accord with equation (8). 

Mathematically, starting from the pure conducting 
medium of volume, V,, and conductivity, K,, we 
incrementally add randomly distributed pore volume, 
dV. At each step we have a new total volume, V, and 
effective thermal conductivity, K. From equation (8), 
the incremental change in thermal conductivity, dK, 
is given by : 

dK 
- = -A(K,IK)$ 
K 

where the incremental ‘P’ of equation (8) has been 
replaced by d V/ V. In equation (9), the function, A, 
takes on the role of a ‘kernel’ which generates par- 
ticular solutions. Equation (9) may be integrated by 
separating the variables, K and V, provided that the 
functional dependence of A(K,/K) on continuous 
medium conductivity, K, is known. The range 
required for K would generally include values between 
K. and K,. Equation (9) can then be the starting point 
for practical analysis to determine K as a function 
of v. 

Similar approaches for extending dilute system 
results to higher concentrations have been published 
previously. As mentioned earlier, Bruggeman [4] 

generalized results for spherical pores originally 
obtained by Maxwell [1] to all pore concentrations. 

In the context of viscosity of dispersed media, Roscoe 
[6] similarly generalized to all concentrations a result 
obtained by Einstein [7] for low concentrations. 

DISTRIBUTIONS OF PORE TYPES AND SIZES 

Although we have so far assumed a distribution of 

identical pores, analyses are general enough to be 
useful in situations involving multiple pore types and 
sizes. In fact, provided amplitudes C and A are appro- 

priately averaged, equations (3)-(8) are equally appro- 
priate for a distribution of pore sizes, shapes and 
contents if such distributions are also uniform in 
space. The amplitude C becomes an average weighted 

by each pore type’s number density, while the ampli- 
tude A becomes an average weighted by each type’s 
porosity contribution. This averaging scheme for A 

accounts for the fact that A is a dimensionless mul- 
tiplier depending only on pore shape and contents. 
(Note that A can also depend on pore size implicitly 

through these other variables, as described in an 
example below.) 

However, some ambiguity arises in generalizing 

solutions of equation (9) to multiple pore types, and 
results may depend on the order in which pore types 
are averaged and integrated. While results in the dilute 

pore limit described by equation (8) are unique, they 
are not necessarily so at higher pore concentrations 
where temperature field perturbations from pores 
overlap. For example, averaging A over various pore 
types prior to integrating equation (9) yields one 
answer. However, different answers may be obtained 
if the integration to the same final configuration is 

performed on one pore type at a time, depending on 
the order of integration. In fact, it may be proven 
mathematically that the formal generalization of 
equation (9) to multiple pore types (dK/K = -A ,dV,/ 

V-AJV-A, dV,/V-. .) does not yield a unique 

solution for K(V,, V,, V,, . .) unless the As are all the 
same. Formally, there are many possible solutions for 

K which depend on the particular path of integration. 
This mathematical reality reflects the fact that, when 
temperature field perturbations from pores overlap, 
the order in which contributions from different pore 
types are averaged and/or added requires, in effect, an 
additional physical assumption. Thus, where multiple 
pore types are present, the preferred order of integra- 
tion is the one which makes the most physical sense. 
Furthermore, if multiple possibilities are present, the 

range of physically reasonable alternatives provide 
an uncertainty estimate to this present modeling 
approach. 

For example, if a known fraction of originally 

empty porosity is backfilled with material of con- 
ductivity close to that of the continuous medium, it 
makes physical sense to first add in the minimal heat 
flow perturbations from the backfilled pores and add 
the larger heat flow perturbations from the remaining 



4186 7. tI. BALLK 

empty ports later on. As a second example. if there is 
a wide range of pore size, it also makes the most 
physical sense to add pore volume in a sequence of 
increasing pore size. We note that pore size can cntc~ 
into solutions of equation (9) Gnp/ic.it/r through 
potential dependence of pore shape and content on 
size (as will be illustrated later. when radiant heat 
transfer inside ports is considered). 

Although examples in the remainder of this paper 
will be rcstrictcd to single port types. practical 
examples involving multiple pore types have been 
dcvcloped and will appear in future publications. 

‘UNIT CELL’ ANALYSIS FOR RANDOMLY 

ORIENTED PORES 

In this section we evaluate the ‘unit cell’ dipole heat 
source generated by single pores perturbing a uniform 
unit temperature gradient. Results of these analyses 
will determine the dimensionless multiplier. A, appro- 
priate to all pore concentrations via solutions of the 
differential equation (9). Pores arc assumed to contain 
conducting material, but radiant heat transfer within 
ports will also be included as an additional option. A 

special case of macroscopically long cylindrical pores 
is introduced to model fibers in a fibrous medium. 

Results presented emphasize randomly oriented 
pores. While formal solutions to the unit cell heat 

transfer problem exist for pores of any shape and 
content, important simplification results when pores 
are randomly oriented. In this case, the effect of pore 
shape is plausibly accounted for as a pore ‘shape 
factor’ parameter contained within rather simple 
universal expressions. When an option for cvalu- 
ating shape factors empirically is included. these 
expressions become useful in a very wide range of 
application. 

Spherical pores containing conducting material 
provide the simplest ‘textbook’ example [S]. The tcm- 
peraturc field in the vicinity of a single spherical pore 
perturbing a uniform unit tcmperaturc gradient in the 
: direction may be written as : 

T ,l,l,\ldC __+C‘- - - 1.’ 

T,,,,,,,, = B:. (IO) 

The coordinate system is pore-centered. The ex- 

pression for Touirldc, to be applied outside the pore, is 
meant to be consistent with equation (3). includ- 
ing the dipole multiplier, C. Because of spherical 
symmetry only the ‘dipole’ contribution is present. 

The expression for T,,,r,de is a matching solution to 

Laplace’s equation that is regular at I’ = 0 to be 
applied inside the pore. The pore radius is R. and 
the thermal conductivities inside and outside the 
pore are K, and K respectively. Parameters B and 
C from equation (IO) (and A from equation (7)) 

may be determined by imposing continuity of tcmpera- 
turc, T,, ,,,, dc = T ,“,, de. and heat flux. KiT,,, ,,,, dc ?r = 

K,iT,,,,,,,/ir. at the pore boundary surface. I. = R : 

K K-k 
B=3 ,: 

K,, + ‘k 
(‘= K &KY 

,/ t 

an d 

(1 I) 

Substituting the equation (I I) expression for .4 into 

equation (8) rcplicatcs the classical conductivity cor- 
rection obtained by Maxwell [I] in the dilute port 
limit. As anticipated, the equation (I 1) expression for 
.4(K,,‘K) also complies with the general constraints 
that A(x) must be greater than or equal to I -X Toi 
all x 3 0 with equality applying in the limit x --9 I. 
In particular. for non-conducting spherical pores : 
A(0) = 32. 

Provided that they are randomly oriented. pores oi 

arbitrary shape perturb a uniform temperature gradi- 
cnt similarly to pores which arc purely spherical. Ran- 

domizing pore orientations basically eliminates an) 
directional prefcrencc to the angular dependence of 
temperature field perturbations. apart from the orip- 
inal direction of heat flow. The upshot is that, when 
pore orientation is averaged. the general form 01 
cxprcssions for T,,,,,,,d, and T,,,,,dc must simply averagc- 
out to the dipole expressions given in equation (IO). 
As with spherical pores. our approach here will be to 
evaluate equation (IO) multipliers B and C by appl!.- 
ing temperature and heat flux continuity across avcr- 
aged boundary surfaces. Symmetry implies that such 
boundary surfaces must be spherical. However. MY 
account for a generalized port shape by recognizing 
that the radii at which heat flux and temperature con- 
tinuity apply may bc different. Indeed, temperature 
and heat flux at a spherical pore boundary arc SCII- 
sitivc to different powers of radius: so. in averaging 
over non-spherical pores. difl’crcnt surface radii arc 
quite plausible. 

WC proceed in an empirical fashion by assuming 

‘inside’ to ‘outside’ continuity of tcmperaturc and 
that radial heat flux occur at radial locations. to bc 
dctcrmined. We define a radius, R,. to be the value 

of I’ where T,, ,,,,,‘, c = T,,,,,,,,. Likewise. WC detine a 

radius. KZ. to be the value of I’ when KiT,,,,,,,,c,‘ir = 
K,?T ,,,,,i, ~?r. R, and RL are to bc compared Ilith 
a \‘olumetric radius, R. defined hy : V, = 4nR’,‘3. 

‘Shape factors’. E, = R:iR’ and $;I = Rl/R’. arc then 

dimensionless parameters which quantify the dcvi- 
ation from spherical pores. Following these dcfi- 
nitions. B, C and the dimensionless multiplier. /I, may 
he evaluated in terms of R. c,. and i:-. The solution 
for A yields : 

I -K,;K 
A(K,,;K) = 3 ; 

2/r:,+(K,:K):c,~ 
(12) 
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However, in light of the bounding constraints of 

equation (2) the two shape factors appearing in 
equation (12) are not really independent. Imposing, 

A(cc) B 1-a and A(a) = I-cc as CI + 1, implies 
l/e, +2/a> = 3 and a2 > 213. Defining one inde- 
pendent shape factor, E = F*, equation (12) becomes : 

A(Kr/K) = 3 
1 - K,/K 

2/~+ (3 -2/c)K,/K. 
(13) 

From the standpoint of rigor, the orientation aver- 

aging procedure used in the preceding derivation is 
subject to some criticism. Specifically, results may not 

be exact in applications where pores are both highly 
irregular and also span a wide range of KJK. Rig- 
orously, continuity across the pore boundary is 
required for each particular pore orientation, and 
averaging of the dipole temperature field perturbation 
over all orientations should be done afterward. While 
the symmetry and continuity arguments used in the 
development of equation (12) are quite correct, our 

approach tacitly assumes that averaged pore surface 
radii, R, and Rz, will be determined by pore geometry 
alone. Therefore, any explicit dependence of surface 
radii and shape factors on K,,/K will be neglected. 
Note that our assumption of ‘geometrically domi- 
nated’ surface radii is physically plausible (and 
correct, of course, in the spherical pore limit). Fur- 
thermore, application of equation (2) constraints 
assure overall KJK dependence of equation (13) will 
be consistent with fundamental principles. So, unless 
pore shape is extremely irregular, the neglected K,/K 

dependence is likely to be weak. Our approach clearly 
has a practical advantage of avoiding potentially 
intractable analytical evaluations when pores are 
irregular, and succeeds in addressing effects of a gen- 
eral pore shape by a single parameter. 

Equation (13) is thus proposed as the generalization 
of equation (11) to randomly oriented pores of any 
shape for use in the solution of equation (9). The 
effect of pore shape is described by a single unknown 
constant ‘shape factor’. E, where E = 1 for spheres and 
constrained to be > 2/3. In practice, for distributions 
of irregularly shaped pores, it is quite convenient to 
regard E as a constant to be determined empirically. 
Even if pores of various shapes are present, a single 
shape factor may be adequate depending on the rel- 
evant range of KJK. For instance, if pores are non- 
conducting, an average shape factor, E,,~, represents 
the porosity-weighted average of individual shape fac- 
tors, E. On the other hand, if pores are highly con- 
ducting (KJK >> I), an average shape factor, aaVg, 
represents a porosity-weighted averaging of the quan- 
tity, c/(38-2). Finally, if pore conductivities are such 
that K p z K, consistency with equation (2) implies 
that A becomes nearly independent of E. 

C. Radiative heat transfer within pores 
It is also possible for our present analyses to include 

heat transfer by radiation within pores. In situations 

where pore contents are transparent to radiation 
and the continuous medium is opaque, significant 
amounts of heat transfer by radiation can take place 

in pores at high absolute temperatures. Basically, the 
fundamental approach to effective conductivity out- 
lined in equations (3)-(6), which requires conductive 
heat transfer outside of pore boundaries, is still valid. 
However, an additional radiative heat flux inside the 
pore will alter the dipole field perturbation produced 
by the pore (multiplier C) and hence change the effec- 
tive conductivity of the porous medium. 

The radiative heat flux emitted from the surface of 
a transparent pore may be quantified as oen*T“, where L 
CJ is the Stefan-Boltzmann constant, e is pore surface 
emissivity, n is the transparent medium’s index of 
refraction, and T is the absolute temperature at the 
pore surface. In general we may express pore surface 
temperature as T+dT, where T is the pore average 

and dT describes an assumed small temperature vari- 
ation around the pore surface (dT << T) that averages 
to 0. In the case of a unit temperature gradient 
perturbed by spherical pore centered at the origin, 
the equation (10) expression for ToutsIde implies that 
dT = (R + C/R’) cos 8, where 0 is the polar angle with 

respect to the original direction of heat flow. Thus, 
for spherical pores, emitted heat flux around a pore 
surface may be approximately linearized to a term 
that is constant : aen2T4, plus one which is varying : 

4aen2T3dT or 4aen2T3(R+C/R2)cos0. 

The net radiative heat flux into the pore at any 
surface location is calculated on the basis of both 
emitted flux and interchange with other locations on 
the surface. In the case of the constant emitted heat 
flux term (oenZT4), emission is exactly balanced by 
interchange, resulting in no net heat flux. However, 

the varying portion of the heat flux requires a more 
careful analysis. Interchange of homogeneously emit- 
ted radiation is proportional not only to total radi- 
ation emitted but also to geometrically determined 
‘radiation shape factors’ [9] that account for orien- 
tation of the two surfaces and the distance between 
them. Significantly, it turns out for spherical surfaces 
that radiation shape factors between any two surface 
locations are the same. For the varying emitted heat 
flux term (4aen2T3dT), uniform radiation shape 
factors imply that contributions deposited at any 
location by interchange will share the same angular 
dependence around the surface as d T and average to 
0. Thus, for spherical pores we have the result that 
the net radiative heat flux into the pore is equal to the 
varying emitted heat flux into the pore, i.e. 
4oen2T3(R+ C/R2) cos 0. 

Applying continuity of temperature and heat flux 
at the spherical pore boundary using equation (10) 
expressions for Toutside and Tinride yields results for B, 
C, and A similar to equation (11). The principal 
change is the addition of an effective radiation term 
K, to the pore conductivity K, as it is used in equation 
(11): 



k’, + K,+K,, where K, = 4oen’T’ R 

(spherical pores). (14) 

To add a radiation contribution to pores of general 
shape, we adapt out earlier approach of applying 
spherically symmetric continuity conditions to ;I 

pore of average orientation. Recalling that R, is the 
radial location where. on average. T,, ,,,,, <I< = T,,,,,,,. 
the net radiative heat flux leaving the surface of an 
averaged pore becomes 40~11’T~( R , + C’; R: ) cm (0). 
Adding this heat flux to the others implicit in cqua- 
tion (IO) and imposing heat flux continuity at radius. 
R2 yields results similar to equations (12) and (13). 
provided that cffectivc port conductivity contains a 
radiation term similar to equation (14). Here. K, 
rcfects the dimension R,. In terms of the port 

shape factor (: and volumetric radius R. the radiative 
contribution to pore conductivity becomes : 

K, = 4crrr?‘T’R(c,(3r:--2))’ ’ 

(pores of general shape). (IS) 

Despite maintaining the gcncral form of earlier 
results, the presence of radiation adds potentially sig- 
nificant temperature and pore-size dependence to the 
analysis. It was argued previously on the basis of 
dimensional analysis that the dimensionless par- 
ameter A should be independent of pore size. Includ- 
ing radiation adds new length scales that enter the 
problem implicitly in the guise of an additional con- 
ductivity, K, that is proportional to both pore radius 
and the cube of absolute tcmperaturc. In accord with 
our previous discussion on distributions of pore 
shapes and sizes. this new depcndencc of A on pore 

size may be important when integrating equation (9). 

We approach the thermal conductivity of a tihrous 
medium by modeling a fiber as a macroscopically long 
cylindrical pore. Not surprisingly, the effect of fibers 
on conductivity depends strongly on whether they arc 
oriented parallel or perpendicular to macroscopic heat 
flow. Thus. we allow for a distribution of cylinder axis 
orientation with respect to the direction of macro- 
scopic heat flow. In practice. the axial orientation ol 
fibers can have cithcr a preferred direction. preferred 

plane, or bc random. Long fibers may also be bent 01 
twisted over macroscopic distance scales. 

In the simplest case. where the fiber axis is parallel 
to the direction of macroscopic heat flow. there is no 
local distortion of the temperature field. The reason- 
ing leading to equation (1) applies. effective con- 

ductivity is given by a volume weighted average of K,, 
and K,,. and the dimensionless multiplier. dcnotcd .A, . 

I 
becomes A, = I - h,, K,,. 

On the other hand, whet-c the fiber axis is pcr- 
pendicular to macroscopic heat flow, the temperature 
field perturbation is more complex. In this case. WC 
model the tcmperaturc field produced by a single long 
cylindrical pore as a uniform distribution of point 

pores extending for a length, L, along the 1‘ axis that 
perturbs a uniform unit temperature gradient along 
the I axis. In pore-centered cylindrical coordinates. 
radial distance from the cylinder. 11 is defined b! 
,‘? = .Y’ + I?. and (i, is the azimuthal angle formed 1~~ 
the radius vector and the .Y axis, such that : = 0 cos (i, 
and .Y = ,I sin 41. The temperature field outside the 

cylinder is dctcrmincd by integrating cyuation (3) o\~ 
pore locations along the J‘ axis. Rcsulrs for km- 
pcrature fields both inside and outside the cylinder arc 

shown in equation (16), retaining terms associated 
with the longest range dipolc contributions. Equation 

(16) is clearly the analog of equation (IO) l’ot- 
cylindrical pores. where the dipolc strength <’ has 
been replaced by a dipole strength per unit length 
(’ I>. 

7;,,,,,,, = lk = Bp cos (/). i 16) 

Following analysis techniques developed earlier, 
constants C and B arc determined by applying con- 
tinuity of temperature and heat flux at the cylinder 
boundary. Following the definition of equation (7). 
the dimensionless multiplier for this case. .,I 
is defined for cylinders as 411(‘;7cR’L. If the cyl- 
indcr cross section is circular. both continuity 
conditions occur at the outer radius. R. If the 
cylinder is of general shape. the two continuity con- 
ditions for the randomly oricntcd cylinder occur at 
averaged radii R, and R,. which may differ from an 
arcal averaged radius R. However. in this cast apply- 
ing bounding constraints of equation (2) to the 
result forces R, = R, = R. Thus, no shape factor 
appears in the analysis of cylindrical ports pro\;idcd 
the arcal radius is used in all expressions. It fol- 
lows that C’, L = (R’:Z)( I -KC,; KC,) (I + K, ‘K,,) and 
..I = 2 1 ~ K,,: K,,)/( 1 + K,,lK,,). This expression for 
.d may be regarded as the cylindrical analog of the 
corresponding expression for sphere5 from equation 

(11). 
If the tibcr is generally oriented at an angle 0 with 

respect to the macroscopic direction of heat flop. ;I 

multiplier, .,I, may be calculated as an appropriate 
avcragc of the above casts of parallel and pcr- 
pcndicular orientation ; i.e. A cos’ (l+ /I sin’o. The 
gcncral multiplier for a fibrous medium bccomcz : 

/l(K,‘K,,.Il) = (lLK,,fK,,) 

x cos’(I+sin’O 
t 

(17) 
\ 

If fibers are randomly oriented. sin’0 = 2 3 and 
co51 0 = 1’3. 

EXPRESSIONS FOR GENERAL APPLICATION 
AND SELECTED EXAMPLES 

A, Gc~nrrtrl rrsult for (I sinql~ porch IJ’/IC 

As discussed earlier, the expression for A(K,lK) fol 
single types of randomly oriented pores from equation 
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(13) is a result that is very useful in a wide range of 
practical applications. These applications can include 
multiple pore types where an averaged pore shape or 
content is appropriate. Equation (9) may be straight- 
forwardly integrated by separation of variables, K and 
V, to yield : 

K-K, 5 l-(2!% 

0 K,-K, K 
= 1 -P (single pore-type) 

(18) 

where we have substituted 1 -P for V,/V, and take 
K0 as the continuous medium conductivity. Equation 
(18) implicitly determines effective thermal con- 
ductivity, K, as a function of porosity, P for all values 
of Kp. 

Because shapes of isolated pores in dilute systems 
may be different from pores in high-porosity systems 
where they are crowded together, shape factors may 
themselves depend on the total porosity. Some func- 
tional dependence of E on P should be considered 
when fitting conductivity data. Note, however, that 
the shape factor should remain constant during the 
mathematical integration of equation (9) at a value 
appropriate to the final porosity at the end of the 
integration. 

B. Low-conductivity pores 
For the special case of non-conducting pores, 

K,, = 0, equation (18) simplifies to : 

K/K, = (1-P)3”‘2 (non-conducting pores) (19) 

providing the analytical form for application in the 
low pore-conductivity limit. 

For a practical illustration emphasizing application 
in regions of high pore concentration, we apply equa- 
tion (19) to a database consisting of electrical con- 
ductivity measurements of liquid foams. (The depen- 
dence of electrical conductivity on the amount of non- 
conducting porosity should be identical to that of 
thermal conductivity.) The data shown on Fig. 2, 
taken from ref. [lo], shows measured porosity depen- 
dence of electrical conductivity for a variety of liquid 
foams, spanning a wide range of liquid electrical con- 
ductance and a porosity range of about 0.6 to 0.95. 
Note that measured porosity dependence seems little 
influenced by the absolute conductivity or any other 
feature of the particular liquid involved. The line 
drawn, showing an excellent fit to the data, is equation 
(19) with a constant value of a = 0.863. 

C. Highly-conducting pores 
Solid-gas debris- or pebble-bed mixtures serve as a 

contrasting example where pore conductivity is high. 
Figure 3 shows thermal conductivity measurements 
from various debris bed sources compiled by Kuzay 
[ 111 plotted against the conductivity of the solid pore 
constituent. Conductivity ratios shown are relative 
to that of the gaseous continuous medium. Mixtures 
shown in Fig. 3 represent stationary compact beds of 
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FIG. 2. Electrical conductivity vs density of various foams 
from ref. [lo]. The curve shown is equation (19) with 

E = 0.863. 

uniform spherical solid ‘pores’ with porosity clustered 
around 0.6. The ratio of K,/KO spans a wide range 
from around 1.8 to 60 000. 

The prediction of equation (18) for spherical pores, 
E = 1, requiring no free parameters, is seen to provide 
a good fit to the data over its entire range. (We note 
that this spherical pore limit of equation (I 8) was first 
derived by Bruggeman [4].) In the high conductivity 
limit where K,/K, >> 1, equation (18) simplifies to : 

K,K, = (1 _p)~@/(3E--2)) 

(highly-conducting pores). (20) 

For P = 0.6 and E = 1, equation (20) implies a limiting 
conductivity ratio of 15.6, which is also in good agree- 
ment with the data shown on Fig. 3. 

D. Fibrous media 
In the case of a general fibrous medium, equation 

(9) is integrated using the equation (17) expression 
for A(K,/K,, Q) to yield : 

= 1 -P (fibrous medium) (21) 

where sin’ 8 reflects the average orientation of fibers 
in the distribution relative to macroscopic heat flow. 
Because exact fiber orientation is often not known or 
difficult to engineer, sin2Q can plausibly serve as an 
adjustable parameter in data analysis. Figure 4 shows 
equation (21) calculations for K/Kp for a range of 
orientations in the highly-useful limit of high con- 
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FIG. 3. Effective thermal conductivity of solid- gas mixtures as compiled by Kuzay [I I]. Data are from 

packed spherical beds with porosity values around 0.6. Prediction of equation (IX) with c = I (no free 
parameters) is shown. This equation was first obtained by Rruggeman [4]. 

ductivity fibers placed in a low-conductivity medium. sin’ II = I. These calculations illustrate an important 
K,/K,, >> I. At the extremes, when sin’0 = 0. K/K, role for fiber orientation as well as porosity. itself. 
varies linearly between 0 and I as a function of in maintaining low conductivitv across an insulating 

- porosity. but is identically 0 for all porosities. if medium. 

High-Conductivity Fibers 

Curves Indicate Average Sine-Squared 
of Angie Between Fibers and Heat Flow 
(0.0 Along Fibers --> I .O Across Fibers) 

0.60 X: Data From Sintered 
Metal Fibers 

0.0 8 
1-P 

FIG. 4. Conductivity of a medium containing high-conductivity fibers with varying porosity and fiber 
orientation. Data are taken from ref. [12]. Curves are cdkXlated from equation (21). 
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Figure 4 also includes conductivity data compiled 
in Mantle and Chang [12] for a variety of sintered 
metal fibers distributed across a low-conductivity con- 
tinuous medium (KJK, > 0.01). As reported in ref. 
[12], fiber orientation was not always well known, but 
at least in some measurements direction of heat flow 
was nominally across fibers. While a single value of 
sin* 0 does not seem to fit all the included data, there 
is a clear indication that the data is best fit by cases 
where sin2 0 > 0.667 or that heat flows preferentially 
across fibers. This preference for heat flow direction 
is more evident at low porosities than at high. 

CONCLUSIONS 

The principal conclusion drawn from this work is 
that the classical problem of the porosity dependence 
of thermal conductivity in porous media can be made 
analytically tractable under the assumptions that pore 
distributions are uniform and random. The ran- 
domness of the distribution is required to be of 
sufficient degree that the microscopic perturbations 
of the temperature field produced by representative 
samples can be smoothed and averaged. Limitations 
of the methods are generally benign, and analytical 
results are remarkably free of restriction. Application 
is appropriate to pore distributions of any con- 
centration, any pore conductivity, and any pore shape 
(provided, of course, pore orientation is also random). 
Multiple pore sizes and types are also permitted. Sim- 
plicity and wide range of applicability of the present 
approach offers significant advance over previous 
treatments of the subject. 

Application of the derived general expressions 
to practical problems is straightforward and very 
amenable to empirical fits. Typically, only one free 
parameter, the ‘shape factor’, requires empirical input 
if pores are of some irregular shape but are randomly 
oriented. Illustrative examples included pores of low 

and high thermal conductivity, a wide range of pore 
volume fractions, non-spherical pore shapes, and the 
use of adjustable parameters. Very reasonable fits to 
data were obtained. While single pore-types were used 
for these illustrations, practical expressions are readily 
generalized to distributions with multiple pore shapes, 
sizes and/or contents. Additional applications will 
appear in a future publication. 
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